Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Stem Cell Res Ther ; 15(1): 58, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433223

RESUMO

OBJECTIVES: Currently, no approved stem cell-based therapies for preserving ovarian function during aging. To solve this problem, we developed a long-term treatment for human embryonic stem cell-derived mesenchymal progenitor cells (hESC-MPCs). We investigated whether the cells retained their ability to resist ovarian aging, which leads to delayed reproductive senescence. MATERIALS AND METHODS: In a middle-aged female model undergoing natural aging, we analyzed whether hESC-MPCs benefit the long-term maintenance of reproductive fecundity and ovarian reservoirs and how their transplantation regulates ovarian function. RESULTS: The number of primordial follicles and mice with regular estrous cycles were increased in perimenopausal mice who underwent multiple introductions of hESC-MPCs compared to age-matched controls. The estradiol levels in the hESC-MPCs group were restored to those in the young and adult groups. Embryonic development and live birth rates were higher in the hESC-MPC group than in the control group, suggesting that hESC-MPCs delayed ovarian senescence. In addition to their direct effects on the ovary, multiple-treatments with hESC-MPCs reduced ovarian fibrosis by downregulating inflammation and fibrosis-related genes via the suppression of myeloid-derived suppressor cells (MDSCs) produced in the bone marrow. CONCLUSIONS: Multiple introductions of hESC-MPCs could be a useful approach to prevent female reproductive senescence and that these cells are promising sources for cell therapy to postpone the ovarian aging and retain fecundity in perimenopausal women.


Assuntos
Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Adulto , Gravidez , Pessoa de Meia-Idade , Feminino , Humanos , Animais , Camundongos , Perimenopausa , Fertilidade , Envelhecimento , Fibrose
2.
Int J Stem Cells ; 17(1): 59-69, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37879852

RESUMO

Human pluripotent stem cells (hPSCs) such as human embryonic stem cells (hESCs), induced pluripotent stem cells, and somatic cell nuclear transfer (SCNT)-hESCs can permanently self-renew while maintaining their capacity to differentiate into any type of somatic cells, thereby serving as an important cell source for cell therapy. However, there are persistent challenges in the application of hPSCs in clinical trials, where one of the most significant is graft rejection by the patient immune system in response to human leukocyte antigen (HLA) mismatch when transplants are obtained from an allogeneic (non-self) cell source. Homozygous SCNT-hESCs (homo-SCNT-hESCs) were used to simplify the clinical application and to reduce HLA mismatch. Here, we present a xeno-free protocol that confirms the efficient generation of neural precursor cells in hPSCs and also the differentiation of dopaminergic neurons. Additionally, there was no difference when comparing the HLA expression patterns of hESC, homo-SCNT-hESCs and hetero-SCNT-hESCs. We propose that there are no differences in the differentiation capacity and HLA expression among hPSCs that can be cultured in vitro. Thus, it is expected that homo-SCNT-hESCs will possess a wider range of applications when transplanted with neural precursor cells in the context of clinical trials.

3.
Biomater Res ; 27(1): 126, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049879

RESUMO

BACKGROUND: To overcome the limitations of current alternative therapies for chronic kidney disease (CKD), tissue engineering-mediated regeneration strategies have demonstrated the possibilities for complete kidney tissue regeneration. Given the challenges associated with the reproducibility of renal basal cells, the incorporation of intermediate mesoderm (IM) cells and bioactive materials to control bioactivities of cells with supported scaffolds should be considered as a viable approach to enable the regeneration of the complex kidney structure via renal differentiation. METHODS: We developed PMEZ scaffolds by combining crucial bioactive components, such as ricinoleic acid-grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) integrated into biodegradable porous PLGA (P) platform. Additionally, we utilized differentiating extracellular vesicles (dEV) isolated during intermediate mesoderm differentiation into kidney progenitor cells, and IM cells were serially incorporated to facilitate kidney tissue regeneration through their differentiation into kidney progenitor cells in the 3/4 nephrectomy mouse model. RESULTS: The use of differentiating extracellular vesicles facilitated IM differentiation into kidney progenitor cells without additional differentiation factors. This led to improvements in various regeneration-related bioactivities including tubule and podocyte regeneration, anti-fibrosis, angiogenesis, and anti-inflammation. Finally, implanting PMEZ/dEV/IM scaffolds in mouse injury model resulted in the restoration of kidney function. CONCLUSIONS: Our study has demonstrated that utilizing biodegradable PLGA-based scaffolds, which include multipotent cells capable of differentiating into various kidney progenitor cells along with supporting components, can facilitate kidney tissue regeneration in the mouse model that simulates CKD through 3/4 nephrectomy.

4.
Phys Act Nutr ; 27(1): 9-15, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37132206

RESUMO

PURPOSE: This study aims to examine the physical activity and eating habits of elite athletes to identify changes in their weight and participation levels in competitions pre- and post-COVID-19, and to establish a database of the abovementioned factors for the post-COVID-19 period. METHODS: This study surveyed 913 elite adult athletes from 22 sports. They were divided into two groups: weight loss athletes' group (WLG) and non-weight loss athletes' group (NWLG). In addition to demographic factors, the questionnaire included questions about physical activity, sleep, and eating habits pre- and post-COVID-19 pandemic. The survey included 46 questions requiring short subjective answers. Statistical significance was set at p<0.05. RESULTS: In the post-COVID-19 pandemic period, physical activity and sitting decreased in athletes of both groups. The difference in the number of meals consumed by both groups varied, and the number of tournaments the athletes participated in decreased for all sports. The success or failure of weight loss is essential for maintaining athletes' performance and health. CONCLUSION: Coaches play an important role in investigating and managing the weight loss regimen of athletes during crisis situations like a pandemic. Additionally, athletes must find the best way to maintain their competencies to the standards set before COVID-19. Adhering to such a regimen will have the greatest impact on their tournament participation in the post-COVID-19 pandemic period.

5.
PLoS One ; 18(3): e0280495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36857405

RESUMO

BACKGROUND: Granulosa cells play an important role in folliculogenesis, however, the role of RNA transcripts of granulosa cells in assessing embryo quality remains unclear. Therefore, we aims to investigate that RNA transcripts of granulosa cells be used to assess the probability of the embryonic developmental capacity. METHODS: This prospective cohort study was attempted to figure out the probability of the embryonic developmental capacity using RNA sequencing of granulosa cells. Granulosa cells were collected from 48 samples in good-quality embryo group and 79 in only poor- quality embryo group from women undergoing in vitro fertilization and embryo transfer treatment. Three samples from each group were used for RNA sequencing. RESULTS: 226 differentially expressed genes (DEGs) were related to high developmental competence of embryos. Gene Ontology enrichment analysis indicated that these DEGs were primarily involved in biological processes, molecular functions, and cellular components. Additionally, pathway analysis revealed that these DEGs were enriched in 13 Kyoto Encyclopedia of Genes and Genomes pathways. Reverse transcription quantitative polymerase chain reaction verified the differential expression of the 13 selected DEGs. Among them,10 genes were differently expressed in the poor-quality embryo group compared to good-quality embryo group, including CSF1R, CTSH, SERPINA1, CYP27A1, ITGB2, IL1ß, TNF, TAB1, BCL2A1, and CCL4. CONCLUSIONS: RNA sequencing data provide the support or confute granulosa expressed genes as non-invasive biomarkers for identifying the embryonic developmental capacity.


Assuntos
Transferência Embrionária , Líquido Folicular , Feminino , Humanos , Estudos Prospectivos , Fertilização In Vitro , Células da Granulosa , Análise de Sequência de RNA , Perfilação da Expressão Gênica
6.
Cells ; 11(21)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36359920

RESUMO

A few prior animal studies have suggested the transplantation or protective effects of mesenchymal stem cells (MSCs) in noise-induced hearing loss. This study intended to evaluate the fates of administered MSCs in the inner ears and the otoprotective effects of MSCs in the noise-induced hearing loss of rats. Human embryonic stem cell-derived MSCs (ES-MSCs) were systematically administered via the tail vein in adult rats. Eight-week-old Sprague-Dawley rats were randomly allocated to the control (n = 8), ES-MSC (n = 4), noise (n = 8), and ES-MSC+noise (n = 10) groups. In ES-MSC and ES-MSC+noise rats, 5 × 105 ES-MSCs were injected via the tail vein. In noise and ES-MSC+noise rats, broadband noise with 115 dB SPL was exposed for 3 h daily for 5 days. The hearing levels were measured using auditory brainstem response (ABR) at 4, 8, 16, and 32 kHz. Cochlear histology was examined using H&E staining and cochlear whole mount immunofluorescence. The presence of human DNA was examined using Sry PCR, and the presence of human cytoplasmic protein was examined using STEM121 immunofluorescence staining. The protein expression levels of heat shock protein 70 (HSP70), apoptosis-inducing factor (AIF), poly (ADP-ribose) (PAR), PAR polymerase (PARP), caspase 3, and cleaved caspase 3 were estimated. The ES-MSC rats did not show changes in ABR thresholds following the administration of ES-MSCs. The ES-MSC+ noise rats demonstrated lower ABR thresholds at 4, 8, and 16 kHz than the noise rats. Cochlear spiral ganglial cells and outer hair cells were more preserved in the ES-MSC+ noise rats than in the noise rats. The Sry PCR bands were highly detected in lung tissue and less in cochlear tissue of ES-MSC+noise rats. Only a few STEM121-positivities were observed in the spiral ganglial cell area of ES-MSC and ES-MSC+noise rats. The protein levels of AIF, PAR, PARP, caspase 3, and cleaved caspase 3 were lower in the ES-MSC+noise rats than in the noise rats. The systemic injection of ES-MSCs preserved hearing levels and attenuated parthanatos and apoptosis in rats with noise-induced hearing loss. In addition, a tiny number of transplanted ES-MSCs were observed in the spiral ganglial areas.


Assuntos
Perda Auditiva Provocada por Ruído , Células-Tronco Embrionárias Humanas , Células-Tronco Mesenquimais , Adulto , Humanos , Ratos , Animais , Perda Auditiva Provocada por Ruído/patologia , Caspase 3 , Limiar Auditivo/fisiologia , Células-Tronco Embrionárias Humanas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Ratos Sprague-Dawley , Células-Tronco Mesenquimais/metabolismo
7.
In Vitro Cell Dev Biol Anim ; 58(7): 571-578, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35859242

RESUMO

In regenerative medicine, humanized mice (hu-mice) are extremely valuable for verifying the cross talk between immune cells and therapeutic cells. Given the highly dynamic nature of the activities of immune cells, the in vitro platform does not allow for screening of their exact interactions with different therapeutic cells. By contrast, hu-mice have been widely applied for in vivo studies, especially those on immune rejection. However, the full reconstitution of lymphoid lineage cells in hu-mice remains to be realized. In this study, we investigated whether lysates from healthy donor-derived pooled mononuclear cells (MNCs) can promote the increase of lymphoid lineage cells in hu-mice. The pooled MNC lysate treatment of hu-mice possessing a low proportion of CD45 cells resulted in significant increases in CD3 cells and CD45 cells with the RO phenotype. The diverse epitopes from the pooled MNC lysates significantly induced the proportion of lymphoid lineage cells in the thymus and spleen after therapeutic cells with mismatched HLAs were co-injected into the hu-mice. These findings demonstrate the technical benefits of using pooled MNC lysates for reconstituting lymphoid lineage cells in hu-mice, providing a valuable in vivo platform for investigating the cross talk between lymphoid immune cells and therapeutic cells.


Assuntos
Linfócitos , Baço , Animais , Epitopos , Humanos , Camundongos , Camundongos SCID , Linfócitos T
8.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563499

RESUMO

In vitro organoids derived from human pluripotent stem cells (hPSCs) have been developed as essential tools to study the underlying mechanisms of human development and diseases owing to their structural and physiological similarity to corresponding organs. Despite recent advances, there are a few methodologies for three-dimensional (3D) skeletal muscle differentiation, which focus on the terminal differentiation into myofibers and investigate the potential of modeling neuromuscular disorders and muscular dystrophies. However, these methodologies cannot recapitulate the developmental processes and lack regenerative capacity. In this study, we developed a new method to differentiate hPSCs into a 3D human skeletal muscle organoid (hSkMO). This organoid model could recapitulate the myogenesis process and possesses regenerative capacities of sustainable satellite cells (SCs), which are adult muscle stem/progenitor cells capable of self-renewal and myogenic differentiation. Our 3D model demonstrated myogenesis through the sequential occurrence of multiple myogenic cell types from SCs to myocytes. Notably, we detected quiescent, non-dividing SCs throughout the hSkMO differentiation in long-term culture. They were activated and differentiated to reconstitute muscle tissue upon damage. Thus, hSkMOs can recapitulate human skeletal muscle development and regeneration and may provide a new model for studying human skeletal muscles and related diseases.


Assuntos
Organoides , Células-Tronco Pluripotentes , Diferenciação Celular/fisiologia , Humanos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo
9.
Stem Cell Res ; 59: 102643, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34971932

RESUMO

Beta2-microglobulin (B2M) is a subunit of human leukocyte antigen class-I (HLA-I) heterodimer that mediates immune rejection through activation of cytotoxic T cells. B2M binding to HLA-I proteins is essential for functional HLA-I on the cell surface. Here, we generated a B2M homozygous knockout somatic cell nuclear transfer-induced embryonic stem cell (SCNT-ESC) line using CRISPR/Cas9-mediated gene targeting. B2M KO cell line, which does not express HLA-I molecules on cell surface, has pluripotency and differentiation ability to three germ layers. This cell line provides a useful cell source for investigating immunogenicity of allogeneic ESCs and their derivatives for tissue regeneration.

10.
Stem Cells Int ; 2021: 5575185, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552632

RESUMO

While studies on embryonic stem cells have been actively conducted, little is known about the epigenetic mechanisms in human embryonic stem cells (hESCs) in extended culture systems. Here, we investigated whether CpG island (CGI) methylation patterns of 24 tumor suppressor genes could be maintained during extended hESC cultures. In total, 10 hESC lines were analyzed. For each cell line, genomic DNA was extracted from early and late passages of cell cultures. CGI methylation levels of 24 tumor suppressor genes were analyzed using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA), pyrosequencing, and real-time polymerase chain reaction (PCR). Different CGI methylation patterns of CASP8, FHIT, and CHFR genes were identified in between early and late passages in some hESC lines. CGI methylation levels of CASP8 significantly increased at late passage in CHA-36, CHA-40, and CHA-42 cell lines compared to those at early passage. The CGI methylation of the FHIT gene was higher at late passage than at early passage in CHA-15, CHA-31, CHA-32, and iPS (FS)-1 cell lines but decreased at the late passage in CHA-20 and H1 cell lines. Different CGI methylation patterns were detected for the CHFR gene only in iPS (FS)-1, and the level significantly increased at late passage. Thus, our findings show that CGI methylation patterns could be altered during prolonged ESC cultures and examining these epigenetic changes is important to assess the maintenance, differentiation, and clinical usage of stem cells.

11.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502145

RESUMO

Pluripotent stem cell-derived mesenchymal progenitor cells (PSC-MPCs) are primarily derived through two main methods: three-dimensional (3D) embryoid body-platform (EB formation) and the 2D direct differentiation method. We recently established somatic cell nuclear transfer (SCNT)-PSC lines and showed their stemness. In the present study, we produced SCNT-PSC-MPCs using a novel direct differentiation method, and the characteristics, gene expression, and genetic stability of these MPCs were compared with those derived through EB formation. The recovery and purification of SCNT-PSC-Direct-MPCs were significantly accelerated compared to those of the SCNT-PSC-EB-MPCs, but both types of MPCs expressed typical surface markers and exhibited similar proliferation and differentiation potentials. Additionally, the analysis of gene expression patterns using microarrays showed very similar patterns. Moreover, array CGH analysis showed that both SCNT-PSC-Direct-MPCs and SCNT-PSC-EB-MPCs exhibited no significant differences in copy number variation (CNV) or single-nucleotide polymorphism (SNP) frequency. These results indicate that SCNT-PSC-Direct-MPCs exhibited high genetic stability even after rapid differentiation into MPCs, and the rate at which directly derived MPCs reached a sufficient number was higher than that of MPCs derived through the EB method. Therefore, we suggest that the direct method of differentiating MPCs from SCNT-PSCs can improve the efficacy of SCNT-PSCs applied to allogeneic transplantation.


Assuntos
Instabilidade Genômica , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Técnicas de Transferência Nuclear/normas , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Polimorfismo Genético
12.
Stem Cell Res Ther ; 12(1): 431, 2021 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-34332643

RESUMO

BACKGROUND: Premature ovarian insufficiency (POI) is one of the most serious side effects of chemotherapy in young cancer survivors. It may not only reduce fecundity but also affect lifelong health. There is no standard therapy for preserving ovarian health after chemotherapy. Recently, administration of embryonic stem cell-derived mesenchymal progenitor cells (ESC-MPCs) has been considered a new therapeutic option for preventing POI. However, the previous method of directly injecting cells into the veins of patients exhibits low efficacy and safety. This study aimed to develop safe and effective local delivery methods for the prevention of POI using two types of bioinspired scaffolds. METHODS: Female mice received intraperitoneal cisplatin for 10 days. On day 11, human ESC-MPCs were delivered through systemic administration using intravenous injection or local administration using intradermal injection and intradermal transplantation with a PLGA/MH sponge or hyaluronic acid (HA) gel (GEL) type of scaffold. PBS was injected intravenously as a negative control. Ovarian function and fertility were evaluated 4 weeks after transplantation. Follicle development was observed using hematoxylin and eosin staining. The plasma levels of sex hormones were measured using ELISA. Expression levels of anti-Müllerian hormone (AMH) and ki-67 were detected using immunostaining, and the quality of oocytes and embryos was evaluated after in vitro fertilization. The estrous cycles were observed at 2 months after transplantation. RESULTS: The local administration of human ESC-MPCs using the bioinspired scaffold to the backs of mice effectively prolonged the cell survival rate in vivo. The HA GEL group exhibited the best recovered ovarian functions, including a significantly increased number of ovarian reserves, estrogen levels, and AMH levels and decreased apoptotic levels. Furthermore, the HA GEL group showed improved quality of oocytes and embryos and estrous cycle regularity. CONCLUSIONS: HA GEL scaffolds can be used as new delivery platforms for ESC-MPC therapy, and this method may provide a novel option for the clinical treatment of chemotherapy-induced POI.


Assuntos
Antineoplásicos , Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Feminino , Humanos , Camundongos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/prevenção & controle
13.
Cells ; 10(6)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073789

RESUMO

Mesenchymal progenitor cells (MPCs) are a promising cell source for regenerative medicine because of their immunomodulatory properties, anti-inflammatory molecule secretion, and replacement of damaged cells. Despite these advantages, heterogeneity in functional potential and limited proliferation capacity of MPCs, as well as the lack of suitable markers for product potency, hamper the development of large-scale manufacturing processes of MPCs. Therefore, there is a sustained need to develop highly proliferative and standardized MPCs in vitro and find suitable functional markers for measuring product potency. In this study, three lines of pluripotent stem cell (PSC)-derived MPCs with high proliferative ability were established and compared with bone-marrow-derived MPCs using proliferation assays and microarrays. A total of six genes were significantly overexpressed (>10-fold) in the highest proliferative MPC line (CHA-hNT5-MPCs) and validated by qRT-PCR. However, only two of the genes (MYOCD and ODZ2) demonstrated a significant correlation with MPC senescence in vitro. Our study provides new gene markers for predicting replicative senescence and the available quantity of MPCs but may also help to guide the development of new standard criteria for manufacturing.


Assuntos
Antígenos de Diferenciação/biossíntese , Proliferação de Células , Senescência Celular , Células-Tronco Mesenquimais/metabolismo , Antígenos de Diferenciação/genética , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
14.
Tissue Eng Regen Med ; 18(4): 651-662, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34165777

RESUMO

BACKGROUND: Leydig cells (LCs) are testicular somatic cells that are the major producers of testosterone in males. Testosterone is essential for male physiology and reproduction. Reduced testosterone levels lead to hypogonadism and are associated with diverse pathologies, such as neuronal dysfunction, cardiovascular disease, and metabolic syndrome. LC transplantation is a promising therapy for hypogonadism; however, the number of LCs in the testis is very rare and they do not proliferate in vitro. Therefore, there is a need for an alternative source of LCs. METHODS: To develop a safer, simple, and rapid strategy to generate human LC-like cells (LLCs) from stem cells, we first performed preliminary tests under different conditions for the induction of LLCs from human CD34/CD73 double positive-testis-derived stem cells (HTSCs). Based on the embryological sequence of events, we suggested a 3-step strategy for the differentiation of human ESCs into LLCs. We generated the mesendoderm in the first stage and intermediate mesoderm (IM) in the second stage and optimized the conditions for differentiation of IM into LLCs by comparing the secreted testosterone levels of each group. RESULTS: HTSCs and human embryonic stem cells can be directly differentiated into LLCs by defined molecular compounds within a short period. Human ESC-derived LLCs can secrete testosterone and express steroidogenic markers. CONCLUSION: We developed a rapid and efficient protocol for the production of LLCs from stem cells using defined molecular compounds. These findings provide a new therapeutic cell source for male hypogonadism.


Assuntos
Células-Tronco Embrionárias Humanas , Hipogonadismo , Diferenciação Celular , Humanos , Células Intersticiais do Testículo , Masculino , Testosterona
15.
Cell Prolif ; 54(7): e13059, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021643

RESUMO

OBJECTIVES: The genetic instability and DNA damage arise during transcription factor-mediated reprogramming of somatic cells, and its efficiency may be reduced due to abnormal chromatin remodelling. The efficiency in somatic cell nuclear transfer (SCNT)-mediated reprogramming is also very low, and it is caused by development arrest of most reconstituted embryos. MATERIALS AND METHODS: Whether the repair of genetic instability or double-strand breaks (DSBs) during SCNT reprogramming may play an important role in embryonic development, we observed and analysed the effect of Rad 51, a key modulator of DNA damage response (DDR) in SCNT-derived embryos. RESULTS: Here, we observed that the activity of Rad 51 is lower in SCNT eggs than in conventional IVF and found a significantly lower level of DSBs in SCNT embryos during reprogramming. To address this difference, supplementation with RS-1, an activator of Rad51, during the activation of SCNT embryos can increase RAD51 expression and DSB foci and thereby increased the efficiency of SCNT reprogramming. Through subsequent single-cell RNA-seq analysis, we observed the reactivation of a large number of genes that were not expressed in SCNT-2-cell embryos by the upregulation of DDR, which may be related to overcoming the developmental block. Additionally, there may be an independent pathway involving histone demethylase that can reduce reprograming-resistance regions. CONCLUSIONS: This technology can contribute to the production of comparable cell sources for regenerative medicine.


Assuntos
Benzamidas/farmacologia , Reprogramação Celular , Desenvolvimento Embrionário/efeitos dos fármacos , Sulfonamidas/farmacologia , Animais , Reparo do DNA/efeitos dos fármacos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Feminino , Instabilidade Genômica , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Técnicas de Transferência Nuclear , Rad51 Recombinase/metabolismo , Regulação para Cima/efeitos dos fármacos
16.
Int J Stem Cells ; 14(2): 203-211, 2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-33906982

RESUMO

BACKGROUND AND OBJECTIVES: Human CD34+ hematopoietic stem cells can reconstitute the human hematopoietic system when transplanted into immunocompromised mice after irradiation. Human leukapheresis peripheral blood (LPB)- and cord blood (CB)-derived CD34+ cells have a similar capacity to reconstitute myeloid lineage cells in a humanized mice (hu-mice) model. However, potent stem cells, such as CB-CD34+ cells, efficiently reconstitute the lymphoid system in vivo compared to LPB-CD34+ cells. Modeling the human hematolymphoid system is vital for studying immune cell crosstalk in human xenografted mice, with CB-CD34+ cells used as an optimized cell source because they are essential in reconstituting lymphoid lineage cells. METHODS AND RESULTS: In this study, we established hu-mice that combined human characteristics with long-term survival and investigated the efficiency of the engraftment of lymphoid lineage cells derived from LPB- and CB-CD34+ cells in the bone marrow, spleen, and LPB. We found an overall increase in the transcriptional activity of lymphoid lineage genes in CB-CD34+ cells. Our results revealed that potent CB-CD34+ cells displaying a general upregulation of the expression of genes involved in lymphopoiesis could contribute to the hematolymphoid system in the humanized mice model with longevity. CONCLUSIONS: Our data suggest that humanized mouse model by usage of CB-CD34+ cells displaying high expression of TFs for lymphoid lineage cells can contribute to study the immune response against lymphocytes.

17.
Korean J Fam Med ; 42(1): 38-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32456407

RESUMO

BACKGROUND: Handgrip strength (HGS) is a good predictor of adverse health outcomes in later life. This prospective study aimed to investigate whether HGS trajectory patterns were associated with all-cause mortality among older adults in Korea. METHODS: This study used the database of the 2006-2016 Korean Longitudinal Study of Aging. Study participants included 3,069 adults aged ≥65 years without a previous history of cancer. The trajectory model was developed to identify different homogeneous trajectory patterns of HGS according to study period. Cox proportional hazards models were then applied to investigate the association between HGS and all-cause mortality. RESULTS: The survival probability according to HGS during the follow-up period decreased as base HGS weakened. We identified four distinct trajectory groups of HGS among men and three among women. The risk of mortality increased as the HGS of both males and females decreased. Compared with the highest HGS group, the adjusted hazard ratios for all-cause mortality of the lowest, lower-mid, and upper-mid HGS groups among males were 3.46 (95% confidence interval [CI], 2.17-6.69), 2.26 (95% CI, 1.47-3.48), and 1.58 (95% CI, 1.07-2.32). Those of the low and mid HGS groups among females were 2.69 (95% CI, 1.39-5.21) and 1.97 (95% CI, 1.05-3.69). CONCLUSION: The faster HGS declined over time, the greater the all-cause mortality risk increased compared with the slowly decreasing or maintained HGS groups among men and women. HGS measurement among older adults will be helpful in assessing their health statuses and pre-assessing disease-associated morbidity.

18.
Comput Struct Biotechnol J ; 18: 3649-3665, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304462

RESUMO

CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.

19.
Ann Geriatr Med Res ; 24(3): 195-203, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32829573

RESUMO

BACKGROUND: Weight change is a known risk factor for mortality. Previous Korean studies only considered mortality consequences of weight change between two time points over relatively short periods. This study investigated whether body mass index (BMI) trajectory patterns were associated with all cause-mortality based on continuous BMI observations during a 10-year follow-up period among Korean older adults. METHOD: This study analyzed data from the 2006-2016 Korean Longitudinal Study of Aging database. The participants included in this study were 3,478 people aged 65 years or older who had no previous cancer history. A trajectory model was developed to classify different homogeneous trajectory subgroups according to BMI, and Cox proportional hazards models were used to investigate the association of BMI trajectory with all-cause mortality. RESULT: We identified four trajectory groups: obese (OG); overweight (OWG); high normal weight (HNWG); and low normal weight (LNWG). The LNWG and HNWG experienced continuous weight loss during the study period. Trajectories with higher BMI were associated with lower mortality. The adjusted hazard ratios (95% confidence intervals) for all-cause mortality in the LNWG, HNWG, and OWG were 2.40 (1.69-3.40), 1.75 (1.26-2.45), and 1.38 (0.99-1.96), respectively, compared with those in the OG. CONCLUSION: We found that the lower the BMI of the weight trajectory group, the higher the mortality over 10 years in Korean older adults. This result suggested that baseline obesity status and degree of weight loss during follow-up contributed to mortality in later life.

20.
Stem Cell Res Ther ; 11(1): 255, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586410

RESUMO

BACKGROUND: Clinical use of mesenchymal stem cells (MSCs) requires a uniform cell population, and their harvesting is invasive and produces a limited number of cells. Human embryonic stem cell-derived MSCs (hESC-MSCs) can differentiate into three germ layers and possess immunosuppressive effects in vitro. Anticancer treatment is a well-known risk factor for premature ovarian failure (POF). In this study, we investigated the effect of hESC-MSC on recovery of ovarian function in cisplatin-induced POF in mice. METHODS: Female mice received intraperitoneal cisplatin for 10 days. On day 12, CHA15-derived hESC-MSCs were transplanted into the mice by tail vein injection. An injection of PBS served as the negative control. Ovaries were removed 28 days after transplantation for assessment of ovarian histology, immunostaining, and fertility testing by superovulation and in vitro fertilization. hESC-MSC transplantation into mice with cisplatin-induced damage restored body weight and ovary size. RESULTS: Mean primary and primordial follicle counts in the hESC-MSC group were significantly improved compared to the PBS group (P < 0.05), and counts of zona pellucida remnants, an apoptotic sign in ovarian follicles, were significantly reduced (P < 0.05). TUNEL assays and cleaved PARP immunostaining indicated apoptosis, which led to loss of ovarian stromal cells in negative control mice, while Ki-67 was higher in the hESC-MSC group and in non-cisplatin-treated controls than in the PBS group. Ovulation was reduced in the PBS group but recovered significantly in the hESC-MSC group. Rates of blastocyst formation from ovulated eggs and live births per mouse also recovered significantly in the hESC-MSC group. CONCLUSIONS: hESC-MSC restored structure and function in the cisplatin-damaged ovary. Our study provides new insights into the great clinical potential of human hESC-MSC in treating POF.


Assuntos
Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Cisplatino/toxicidade , Feminino , Humanos , Camundongos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...